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Ephedrine is an illicit drug, classified as precursor for methamphetamine, which is also used as stimulant, appetite 

suppressant, decongestant or asthma. In this study, novel molecularly imprinted polymer (MIP) films were prepared by 

sol-gel derived techniques, using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as functional monomer, to recognize 

ephedrine from aqueous solutions. The films were obtained by air-spraying the precursor solutions, with various 

concentrations of monomer and template, on glass supports. Infrared, thermogravimetry, ellipsometry, optic and atomic 

force microscopy analyzes of films provided information regarding the effect of molecular imprinting upon the physical 

properties of films. Further on, batch rebinding evaluation indicated that thinner films present high affinity for ephedrine, 

resulting in 6.2 imprinting factor after 15 minutes of contact, which attests the ability of the novel MIP films to recognize 

and rebind ephedrine. 

 
 

Graphical Abstract: Schematic preparation of ephedrine-MIP/NIP films (a), the structure of the functional monomer  

DAMO-T (b) and the structure of ephedrine (c) 
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Nowadays, the abuse of illicit drugs (like ephedrine, methamphetamine, LSD, cocaine) has become one of the biggest 

problems of the world. The illicit drugs affect people health, directly (by oral, intranasal, injection or inhalation) or 

indirectly (from the environment – as a result of human body metabolism after consumption, and/or accidentally or 

deliberately following inappropriate storage, or by waste discharged from illegal synthesis laboratories) [1-3]. Due to this 

combination, the demand of detection devices for the most used drugs has increased considerably in the last years. For  
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instance, ephedrine is a sympathomimetic amine, an illicit drug which is also used as a medicine – concentration aid, 

stimulant, appetite suppressant, decongestant, asthma [4-6]. The molecular structure of ephedrine is close to that of 

methamphetamine, being classified as its precursor. Methamphetamine can be obtained from ephedrine or 

pseudoephedrine and hydrionic acid, or in situ [7-10]. The molecular formula of ephedrine is C10H15NO and the molecular 

weight is 165 g/mol. It is presented as white microcrystalline powder/granules/pieces, odorless. The boiling point is 

255°C. It is soluble in water, ethanol, ether, benzene and chloroform [11]. For this particular drug, the detection is made 

using chromatography-mass spectrometry [12, 13], gas chromatography-mass spectrometry [14, 15], Fourier transform 

infrared (FT-IR), high performance liquid chromatography (HPLC) or nuclear magnetic resonance (NMR), etc. [16]. 

However, the present methods are limited to high response time, expensive manufacturing costs, lack of portability and so 

on. Therefore, sensors are becoming more attractive for such applications. Due to many advantages, like low 

manufacturing costs, real-time analysis, selectivity, short response time and small dimensions [17, 18], sensors are used 

nowadays for various purposes targeting population safety, industrial hygiene, product quality, emission monitoring, 

clinical diagnosis, environmental monitoring, etc. [19].   

A sensor is a device that converts the chemical/physical changes of a material (i.e. the information) into measurable 

analytical signals. The information can be derived from a chemical reaction or from a change of the physical property of 

the system when contacted with the analyte. The main elements of sensor devices are the receptor and the transducer. The 

information generated by the receptor as a form of energy is transformed into a measurable signal by the active transducer 

(which can be an electric tension, electric/light intensity, frequency, and so on, as function of the method of energy 

conversion) [20, 21] and further displayed using appropriate detectors depending on the nature of the output signal (e.g. 

potentiostats, oscilloscopes, ellipsometers or spectroscopes etc.). Since various types of versatile transducers were 

developed in the last decades [22-27], and are now commercially available [28, 29], in this study the attention was 

focused towards developing receptors with the ability to recognize and rebind ephedrine. In this respect, molecular 

imprinting and sol-gel technology were combined in order to deliver a performant thin film, which can be further used as 

recognition element for preparing sensors. 

Molecular imprinting is a technique used to obtain artificial receptors which are able to recognize with high precision 

and rebind various small molecules or macromolecules [30-38]. Molecularly imprinted polymer (MIP) films are now used 

to obtain a wide range of sensors [39, 40] due to their advantages like low cost, high performance in organic solvents, 

selectivity, affinity for the template, ease of preparation, and so on [41-43]. In order to obtain imprinted polymers, the 

formation of a polymerizable complex between the functional monomer/s and the template is extremely important. 

Afterward, the polymerization of the obtained complex in the presence of a cross-linker stiffens the polymer structure and, 

finally, the following template removal leads to binding sites that are complementary in size, shape, and functional group 

with the template molecule [44].  

Obtaining of sol-gel derived MIP films involves two steps, i.e. deposition of precursor solution (where hydrolysis of 

silane leads to the formation of silanol reactive groups) followed by maturation of film (where polycondensation of the 

silanol reactive groups occurs with the formation of polysiloxane rigid networks [45-47]. MIP films obtained by sol-gel 

deposition feature good selectivity, low cost and stability at re-use [48], which is why are used in a wide range of 

applications, like ceramic synthesis, thin films and sensors. One of the most important advantages of these materials refers 

to nano-scalability in terms of film thickness. Plus, the nano-scaled thickness together with the film’s transparency and the 

positive response in the visible region makes such MIP films potentially viable for developing optical sensors [49, 50]. 

Hence, the preparation of the molecularly imprinted thin films for ephedrine recognition, using a sol-gel derived method, 

would be the main novelty of this study. 

 

Experimental part 

Materials  and methods 

The monomer, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO-T), 97% was purchased from Sigma 

Aldrich (St. Louis, MO, USA) and used as was received. The template, ephedrine hydrochloride 50 mg/mL was purchased 

from Zentiva (U Kabelovny, Prague, CZ) and used as was received. Ethanol, 99.5%, was purchased from ChimReactiv 

(Ion Creanga, NT, RO) and ammonium hydroxide, 25%, from Chimopoar (Bd. Pallady Theodor, B, RO). Distillate water 

was obtained in our laboratory.  

The films deposited on glass substrates were analysed using the spectro-eliposometric method. All measurements were 

performed with UV-Vis-NIR Ellipsometer VASE® (from J.A. Woollam Co, Inc.) in the 190 - 1000 nm wavelength range 

at 70º AOI with a 10 nm step and 20 scans/ measurement (microspot).  
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Microscopy and topography of films was assessed using digital microscopy - Hirox RH-2000 Digital, atomic force 

microscopy in non-contact mode - NT-MDT NTEGRA Probe NanoLaboratory system (NT-MDT NSG01 cantilever with 

tip radius of 10 nm) and scanning electron microscopy - Zeiss Supra 40VP.  

The structure analysis was carried out using Nicolet iS50 FT-IR device with ATR - SMART iTR (Termo 

SCIENTIFIC) and thermal analysis was performed using TA Instrument SDT Q600 Thermo-Gravimetric Device.  

For batch rebinding experiments Thermo Nicolette UV-VIS Spectrometer was used in order to determine the 

adsorption of ephedrine at the specific wavelength, λ=257 nm.  

 

 Preparation of film precursor solutions and film deposition  

The films were synthesized by a sol-gel derived technique in basic conditions, according to a similar recipe developed 

by Florea et al. [51], which involved the hydrolysis of methoxy groups of the monomer, followed by their condensation 

for obtaining the rigid polymer network.  

 
Fig. 1. Preparation of ephedrine-MIP/NIP films (a), the structure of the functional monomer DAMO-T (b) 

 and the structure of ephedrine (c) 

 

For each sample, two solutions were prepared as follows: solutions A, which consists in dissolving in ethanol the 

monomer and the template, i.e. ephedrine hydrochloride, and solution B obtained from ammonium hydroxide and water. 

After the two solutions were homogenized separately, solution A was added over B to yield the MIP film precursor 

solution. After 2 h of mechanical stirring the precursor was casted on glass substrates by air-spraying (Figure 1). The same 

procedure was used for obtaining the control films (NIPs) but without adding the template. Using this technique two film 

series with various thicknesses, namely MIP C/NIP C and MIP D/NIP D pairs (Table 1), were obtained by dilution of 

solution A. After deposition, the films were maturated at room temperature for 48 hours, then for another 48 hours at 80ºC 

in an oven. 

 
Table 1 

RECIPES FOR THE PREPARATION OF MIP/NIP PRECURSOR SOLUTIONS 

 Substance [mmoles] MIP C NIP C MIP D NIP D 

Solution A 

DAMO-T Monomer 0.7 0.7 0.7 0.7 

EtOH Solvent 17 17 34 34 

Ephedrine Template 0.07 0 0.07 0 

Solution B 
NH4OH Solvent 12.5 12.5 27.7 27.7 

H2O Solvent 14 14 28 28 

 

All MIP films were washed with ethanol to extract the ephedrine and to remove the unreacted monomer. In this step, 

the films were immersed in 100 mL of ethanol and placed in the ultrasonic bath for 4 hours at room temperature. To 

reduce errors, the same procedure was applied to the NIPs, as well. 

 

Rebinding capacity and imprinting factor of films 

The adsorption capacity is one of the most important characteristics of MIP sensitive films. Depending of this property 

the sensor is capable or not to recognize the template, in this case ephedrine. Therefore, batch rebinding measurements are 

highly useful to validate the specificity of MIP films by measuring the adsorbed amount of ephedrine relative to the NIP 

films. In this respect, dried MIP and NIP films were immersed in 40 mL of aqueous solution containing 2.74 mmoles of 
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ephedrine/L. The quantification method referred, in this case, to measuring the initial and final concentration of the feed 

aqueous solutions (i.e. before and after contact with the films) using a UV-Vis Spectrophotometer. The specific 

parameters used to determine the adsorption performance were calculated using the following equations: 

p

sfNiN

m

Vcc
Q




)( ,,
   (1) 

Where: 

– Q is the binding capacity of films, (g of ephedrine/ g of film);  

– 
iNc ,
(g/L) and 

fNc ,
(g/L) are the initial and final concentrations of ephedrine in solutions; 

– sV (L) is the initial volume of the solution; 

– 
pm  (g) is the quantity of the polymer layer.  
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Q

Q
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Where: 

– F is the imprinting factor, which quantifies the specificity of adsorption; 

– 
MIPQ  (g ephedrine/g of MIP) is the adsorption capacity of MIP; 

– NIPQ  (g ephedrine/g of NIP) is the adsorption capacity of NIP. 

Calibration was performed in the 5.48 mmoles/L- 0.137 mmol/L ephedrine concentration range. The regression 

equation, Eq. (3), used to calculate the concentration of ephedrine was determined at the specific wavelength, λ=257 nm 

with a regression coefficient, r=0.982.   

2.167

014.0


A
cN

   (3) 

Where: 

– A is the sample absorbance at λ=257 nm;  

– 
Nc (g/L) is the concentrations of ephedrine in the analyzed sample; 

 

Results and discussions 

Thickness assessment and optical proprieties 

According to the synthesis recipes of films that use two different concentrations for the precursor solution, the final 

films after maturation should present either nano- or micron-sized thickness. Ellipsometry is one of the fewest methods to 

allow proper evaluation of thickness for transparent films. In this respect, ellipsometric data were fitted according to the 

Cauchy Model for transparent materials (given in Table 2), which allowed thickness evaluation of films. Thickness 

differences were observed for both the MIP D/ NIP D and MIP C/NIP C films as summarized in Table 2.  

 
Table 2 

     FILMS THICKNESS DETERMINED BY ELLIPSOMETRY USING THE CAUCHY MODEL 

Cauchy Model Sample d layer [nm] 
MSE*(mean 

square error) 

Rugosity    

Cauchy – Thin          

film 

NIP D 194.77 0.76 

MIP D 201.29 1.04 

NIP C 5126.18 0.96 

MIP C 3811.13 0.63 

Glass – substrate  

    Figure 2 reveals the refractive index variation of the analyzed films obtained from the ellipsometric data modelling. 

As shown in Figure 2a and b, the refractive indexes were higher for the MIP films due to ephedrine presence in the films 

structure. Hence, both MIP film types presented optical response for the target molecule regardless of thickness. The 

refractive index difference, Δn, in the 600-1000 nm range (visible range) between MIP C and NIP C varied from 0.004 to 

0.005, while for MIP D and NIP D was constant, Δn =0.003. This latter result indicated again that thinner films are more 

homogenous. 
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Further on, in Figure 2c and d, the transmittance profiles of MIP and NIP film pairs was evaluated.  Herein, the glass 

substrate presented the highest transmission, over 92%, across the 350-900 nm wavelength range. Transmission of films 

was lower than that of glass alone, maximum being attained by NIP D with over 87% T, which is explainable due to its 

low thickness. Yet, the MIP D transparency was even lower, compared to that of MIP C and NIP C, indicating the 

formation of different networks due to monomer-template auto-assembly. 

                            
Fig. 2. Refractive index variation in the 250-1000 nm wavelength range, for:  

NIP C/ MIP C films (a),  and NIP D/ MIP D films (b); Transmittance profiles, in the 250-900 nm  

wavelength range, for: NIP C/ NIP D films (c), and MIP C/ MIP D films (d) 

FT-IR analysis  

All the films were evaluated by FT-IR and their spectra are shown in Figure 3. The characteristic band for -OH 

stretching (terminal groups of the organosilica network) was present in the range of 3260-3280 cm-1. Methylene groups 

from the DAMO-T monomer were spotted around 2930 cm-1. The stretching of Si-O-Si backbone was noticed in the 850-

1108 cm-1 range. Deformation vibrations of the primary (-NH2-) and secondary (-NH-) amines were observed around 1650 

cm-1 and 1470 cm-1, respectively, and can be attributed to both the template (ephedrine) and the monomer. The presence 

of ephedrine in the MIP films (Figure3a and c)  was attested by the shift of the NH2 band with around 10 nm; this being 

the functional group in the monomer/polymer responsible for template interactions via hydrogen bonds.  

 

                                              
Fig. 3. FT-IR spectra of films: (a) MIP D, (b) NIP D, (c) MIP C, (d) NIP C. 
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 TGA analyses 

For determining the thermal behavior, the MIP and NIP films were scratched off the glass substrate and analyzed by 

thermo-gravimetry (thermograms and derivatives depict in Figure 4.a-d). In the first interval, the mass loss of all films 

was associated with the loss of water and ethanol. In the 200-300 °C range, thermal degradation of ephedrine occurred 

(attaining a maximum at 220 °C), as observed from the thermogram of MIP C and MIP D (Figure 4.a and c). The next 

range valid for all films, 300-500 °C, can be attributed to degradation/fragmentation of the pendant groups (i.e. amino, 

amino-ethyl, amino-methyl, methyl and ethyl fragment types), and  the last degradation step, between 500-800 °C, 

represented the degradation of the polymer backbone [51]. At 800 °C all films registered high amounts of residue, which 

also confirmed the good thermal stability of the films. Here it can be mentioned that the residue was higher for MIP D 

film (Figure 4.a), which indicated a more discrete auto-assembly between the monomer and the template at lower 

concentrations of precursors. Concluding, the monomer-template auto-assembly in the imprinting stage has led to more 

homogenous and compact structure of films.   

 

 

 
Fig. 4. Thermograms (TG) and derivatives of films (DTG): (a) MIP D, (b) NIP D, (c) MIP C, (d) NIP C. 

 

Microscopy analysis 

Besides the recognition properties for ephedrine, the sensor elements should also be continuous with no cracks (to have 

homogenous properties on bulk) and also to present a high surface/contact area to enhance the sensitivity of the future 

sensor. As a result, the films morphology was analyzed using digital, atomic force and electron microscopy. For discrete 

analysis of morphology on thin films SEM was very much suited. AFM was used to calculate changes in roughness and 

surface area variations due to differences in films deposition. The optical microscopy was also used to observe if the films 

were homogenous on larger surfaces after maturation; it is important for sensors applications to have a homogenous film 

with no cracks as the electrical properties and reproducibility are very much influenced by this factor. As it can be 

observed from the digital snapshots, MIP D and NIP D films (Figure 5.c and d) present less asperities and bubbles than 

MIP C and NIP C (Figure 5.a and b). Hence, the thin films were indeed more homogeneous as revealed by the thermal 

analyses, as well.  
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Fig.  5. Digital microscope snapshots of films: (a) MIP C, (b) NIP C, (c) MIP D, (d) NIP D. 

 
Fig. 6. AFM Topography of films: (a) 2D–MIP C, (b) 3D–MIP C, (c) 2D–NIP C, (d) 3D–NIP C 

 

 
Fig. 7. AFM Topography of films: (a) 2D–MIP D, (b) 3D–MIP D, (c) 2D–NIP D, (d) 3D–NIP D 

 

Figure 6 and figure 7 reveal the films topography investigated using atomic force microscopy in 2D and 3D scans of 

MIP C/NIP C pair and MIP D/NIP D pair, respectively. In both the 2D and 3D scan of control film NIP C (Figure 6c and 
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d), random peaks can be observed on the surface, indicating either a non-homogenous deposition or the fact that ephedrine 

addition improved the films homogeneity for the following MIP C film (in Figure 6a and b), as it auto-assembles with the 

functional monomer. Nevertheless, at lower concentrations of precursor monomer, the imprinted and the control films, 

(Figure 7c and d, MIP D and NIP D, respectively) presented better thickness distributions and surface uniformity. Further 

on, SEM micrographs (Figure 8 a-d) were consistent with the topography assessment, revealing different surface 

morphologies of the MIP and NIP films compared with each other, but also compared from the thickness point of view. 

The surface of MIP D (Figure 8c) was more homogenous comparing to the MIP C and presented a tortuous aspect. The 

roughness of films (presented in Figure 9) pointed toward higher surface homogeneity of MIP films relative to their 

control pairs and also validates the unusual surface morphology of NIP C.   

 
Fig. 8. SEM morphology of films at 1 µm scale: (a) MIP C, (b) NIP C, (c) MIP D, (d) NIP D 

 

 
 

Fig. 9. Roughness of MIP C /NIP C and MIP D/NIP D pairs determined by AFM (a) and variation  

of the imprinting factor, F, in time, for the representative MIP D film (b) 

 

Batch Rebinding of Ephedrine 

Finally, to evaluate the binding affinity for ephedrine of the MIP relative to the NIP films, rebinding experiments were 

performed. After drying, the films were weighed and immersed in a feed aqueous solution of ephedrine with known 

concentration. For MIP C films the concentration of ephedrine increased in the supernatant in the studied time range, 

which can be due to a phenomenon called leaching; this means that ephedrine was not entirely extracted from the MIP C 

film and it was desorbed during batch rebinding tests. Therefore, determining Q and F for this MIP C/ NIP C pair was not 

possible. However, MIP D film seemed to rebind ephedrine quantitatively with high specificity relative to the reference 

NIP D film. The concentration of supernatants was assessed by UV-vis measurements at 1 minute, 5, 10, 15, 20 minutes 

after contact (in duplicate) and the specific parameters, in terms of binding capacity, Q (µg ephedrine/ g of film), and 

imprinting factor, F, were determined and outlined in Table 3 and Figure 9b, respectively.  
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Table 3 

BINDING CAPACITIES, Q, AND IMPRINTING FACTORS, F, OF MIP D AND NIP D FILMS 

Time 1 min 5 min 10 min 15 min 20 min 

The adsorption capacity, Q (µg/g) 

MIP D 0.0217 0.0234 0.0224 0.0217 0.0209 

NIP D 0.0038 0.0051 0.0038 0.0035 0.0036 

 

The difference of binding capacity from MIP D to NIP D was approximately one order of magnitude and definitely 

due to the molecularly imprinted cavities formed during synthesis. At the same time, the imprinting factors, F, attained 

high values between 4.6 and 6.2 (maximum attained at 15 minutes) on the studied time range (Figure 9b). Thus, 

confirming the efficiency of the imprinting method, in terms of strong interactions between the MIP D film and ephedrine, 

fast and specific recognition and binding of ephedrine [40, 51]. These results are by far superior relative to other literature 

reports [52-54]. For instance, Tian et al. [52] reported ephedrine binding capacities of approximately 95 µg/ g for MIP and 

86 µg/ g for NIP, which resulted in a 1.1 imprinting factor.  

 

Conclusions 

In this study, ephedrine-MIP films were obtained by air-sparing on glass supports sol-gel precursors in order to 

develop sensitive elements for ephedrine recognition. Structural, thermal, optical and morphological assessments were 

complementary, helping toward revealing and explaining the discrete modifications of the films structure that occurred 

during molecular imprinting. According to the batch re-binding experiments, only the imprinted thin film, MIP D was 

performant, attaining a 10 times higher rebinding capacity relative to the control film. The recorded imprinting factor in 

the first minute of contact was above 5 and increased at 6.2 after 15 minutes, reveling fast and specific adsorption of 

ephedrine.  
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